Ceramics International, cilt.49, sa.19, ss.31773-31783, 2023 (SCI-Expanded)
Oxyhalide glasses are utilized in the process of immobilizing nuclear waste and function as scintillating agents for the purpose of radiation detection. The objective of this study is to examine the enhanced mechanical and radiation attenuation characteristics of newly developed oxyhalide glasses by incorporating zinc-iodide. This study investigates the synthesis process, mechanical properties, and experimental gamma-neutron radiation transmission properties. A halogen-free base glass, consisting of an oxide mixture of P2O5, TeO2, and ZnO, was synthesized. Following that, the initial glass composition was further strengthened by the addition of zinc bromide (ZnBr2), zinc chloride (ZnCl2), zinc fluoride (ZnF2), and zinc iodide (ZnI2) in a successive manner. The experimental configuration entailed positioning circular glass samples between a 133Ba radioisotope and a Canberra High Purity Germanium (HPGe) detector. The determination of attenuation coefficients is achieved through the measurement of individual attenuation properties. Afterwards, theoretical approaches are utilized to determine the mechanical characteristics of halogenated glasses, including Young's modulus (Y), Bulk modulus (K), Shear modulus (G), Longitudinal modulus (L), and Poisson's modulus (v). The results of the study suggest that the implementation of the halogenation process on the P2O5–TeO2–ZnO base composition led to a significant enhancement in the examined properties. The incorporation of zinc-iodide in the halogenation process resulted in a significant improvement in the gamma absorption properties. The utilization of zinc in the halogenation process demonstrates multifunctional capabilities, which involve the potential to enhance various glass properties, including durability and gamma-ray absorption properties. It can be concluded that zinc-iodide demonstrates enhanced halogenation capabilities in comparison to zinc bromide, zinc chloride, and zinc fluoride.