Recovery of zinc and lead from Yahyali non-sulphide flotation tailing by sequential acidic and sodium hydroxide leaching in the presence of potassium sodium tartrate


KURŞUNOĞLU S., TOP S., KAYA M.

TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, cilt.30, sa.12, ss.3367-3378, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 30 Sayı: 12
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1016/s1003-6326(20)65468-1
  • Dergi Adı: TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Communication Abstracts, Compendex, INSPEC, Metadex, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.3367-3378
  • Anahtar Kelimeler: zinc, lead, flotation tailing, sequential leach, LOW-GRADE, OXIDE ORE, HYDROMETALLURGICAL TREATMENT, DISSOLUTION KINETICS, SELECTIVE RECOVERY, SMITHSONITE ORE, SULFATE, HEMIMORPHITE, COPPER, METALS
  • Eskişehir Osmangazi Üniversitesi Adresli: Evet

Özet

The recovery of zinc and lead from Yahyali non-sulphide flotation tailing using sulfuric acid followed by sodium hydroxide leaching in the presence of potassium sodium tartrate was experimentally investigated. In the acidic leaching stage, the effects of pH, solid-to-liquid ratio and temperature on the dissolution of zinc from the tailing were explored. 82.3% Zn dissolution was achieved at a pH of 2, a temperature of 40 degrees C, a solid-to-liquid ratio of 20% and a leaching time of 2 h, whereas the iron and lead dissolutions were determined to be less than 0.5%. The sulfuric acid consumption was found to be 110.6 kg/t (dry tailing). The leaching temperature had no beneficial effect on the dissolution of zinc from the tailing. The acidic leach solution was subjected to an electrowinning test. The cathode product consisted of 99.8% Zn and 0.15% Fe. In the alkaline leaching stage, the Pb dissolution increased slightly in the presence of potassium sodium tartrate. More than 60% of Pb was taken into the leach solution when the leaching temperature increased from 40 to 80 degrees C. The final leach residue was analyzed by XRD and XRF. The XRD results indicated that the major peaks originated from the goethite and quartz while minor peaks stem from smithsonite and cemssite. The XRF analysis demonstrated that the residue contained 70.3% iron oxide. Based on the sequential leaching experiments, the zinc and lead were excellently depleted from the flotation tailing, leaving a considerable amount of iron in the final residue.