Acta Geotechnica, 2024 (SCI-Expanded)
Internal erosion is one of the most important factors that cause earth structures that retain water, such as embankment dams, to collapse. Concentrated leak erosion, one of the forms of internal erosion, occurs in cracked fine-grained soils and pressurized flow conditions. To evaluate the concentrated leak erosion risk of cracks/voids, it is necessary to ascertain the erosion resistance of these materials. The erosion rate and critical shear stresses determine internal erosion resistance in concentrated leak erosion. This study determined soil’s concentrated leak erosion resistance using test equipment that allowed the flow to pass through a hole with stress-free (no loading), anisotropic-compression stress, anisotropic-expansion stress, and isotropic stress conditions. The stresses that developed in the samples’ hole wall where erosion occurred were determined with numerical modeling as pre-experimental stress conditions. The experiments were performed under a single hydraulic head on four selected cohesive soils with different erosion sensitivity. Time-dependent flow rates obtained from the test system can be used to determine hydraulic parameters, such as energy grade lines, with the help of basic theorems of pipe hydraulics in theoretical hydraulic models. Moreover, the erosion rates were quantitatively determined using the continuity equation, while critical shear stresses were qualitatively compared for concentrated leak erosion developed by the dispersion mechanism. As a result of the experiments, stress conditions influence the concentrated leak erosion resistance in the soil samples with dispersive erosion. Moreover, the shear strength in the Mohr–Coulomb hypothesis can explain the erosion resistance in these soils under stress conditions depending on the sand/clay ratio.