The Role of Oxidative Stress, Renal Inflammation, and Apoptosis in Post Ischemic Reperfusion Injury of Kidney Tissue: the Protective Effect of Dose-Dependent Boric Acid Administration


KAR F. , HACIOĞLU C., ŞENTÜRK H. , BURUKOĞLU DÖNMEZ D. , KANBAK G.

BIOLOGICAL TRACE ELEMENT RESEARCH, cilt.195, sa.1, ss.150-158, 2020 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 195 Konu: 1
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1007/s12011-019-01824-1
  • Dergi Adı: BIOLOGICAL TRACE ELEMENT RESEARCH
  • Sayfa Sayıları: ss.150-158

Özet

Ischemia/reperfusion (I/R) injury is associated with a strong inflammatory and oxidative stress response to hypoxia and reperfusion that impair organ function. We aimed to investigate the role of oxidative stress, renal inflammation, and apoptosis in the injury of the kidney tissue after ischemic reperfusion, and the protective effect of dose-dependent boric acid administration. For this purpose, 35 Sprague Dawley albino rats were divided into five groups of seven animals in each group: Sham, I/R and I/R + boric acid (BA) (i.p at doses of 50, 100, and 200 mg/kg). All animals underwent nephrectomy (the right kidney was removed) and were expected to recover for 15 days. After recovery, each animal received 45 min of ischemia. BA was injected intraperitoneally 10 min before reperfusion and a 24-h reperfusion procedure was performed. Sham group only underwent surgical stress procedure. In order to investigate the oxidative stress induced by I/R injury and antioxidant effects of different BA doses in the kidney tissue, TAS, TOS, MDA, SOD, CAT, and GSH levels were measured. DNA fragmentation, cytochrome C levels, caspase 3 activity were measured to determine apoptotic index in tissue. IL-6 and TNF-alpha levels were measured in the evaluation of inflammation. Hematoxylin-eosin and TUNEL staining was performed for histopathological examinations. As a result, increased oxidative stress, inflammation, and apoptosis after I/R were decreased with different doses of BA treatment. The application of high-dose BA was found to be lower in anti-apoptotic, anti-inflammatory, and antioxidant effects than in the low-dose groups.