NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS, 2024 (SCI-Expanded)
PIWI-Interacting RNAs are small non-coding RNAs derived from single-stranded RNAs which plays a crucial role in epigenetic regulation through transposon silencing and mRNA degradation via deamination. This study aimed to inhibit piR-651 and piR-823 in MDA-MB-231 triple-negative breast cancer cells and to explore their potential effects on healthy HUVEC cells. Non-target, anti-piR-651, and anti-piR-823 sequences were transfected in bothHUVEC and MDA-MB-231 cells using Lipofectamine. Proliferation and motility were assessed at 24, 48, and 72 h post-transfection in both cell lines. Based on the motility findings, MDA-MB-231 cells were underwent an invasion assay using crystal violet staining. The expressions of Ki-67, HIF-1 alpha, MMP-2, and MMP-9 genes were measured at 48 h, when both cell lines exhibited the most significant effects of inhibition. The optimal time for proliferation of anti-piR-651 and anti-piR-823 transfected MDA-MB-231 cells was determined to be at 48 h, as indicated by decreased motility and invasion assay results (p < 0.001). NeverthelessHowever, there was no significant difference in the motility and proliferation of HUVECss transfected with anti-piR-651 and anti-piR-823 compared to the control group (p > 0.05). Asides from MMP-2 in anti-piR-823 transfected HUVECs and HIF-1 alpha in anti-piR-823 transfected MDA-MB-231 cells, gene expressions of Ki-67, HIF-1 alpha, MMP-2, and MMP-9 were reduced in both cell lines (p < 0.001). Inhibition of piR-651 and piR-823 decreased the survival and metastasis of cancer cells, without causing vital structural changes in healthy cells. Future research in cancer gene therapy or genetic modification may benefit from investigating piR-651 and piR-823 as possible inhibitors of breast cancer invasion and metastasis.