APPLICATIONS OF FRACTIONAL COMPLEX TRANSFORM AND (G '/G)-EXPANSION METHOD FOR TIME-FRACTIONAL DIFFERENTIAL EQUATIONS


Bekir A., GÜNER Ö., ÜNSAL Ö., Mirzazadeh M.

JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, cilt.6, sa.1, ss.131-144, 2016 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 6 Sayı: 1
  • Basım Tarihi: 2016
  • Dergi Adı: JOURNAL OF APPLIED ANALYSIS AND COMPUTATION
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.131-144
  • Anahtar Kelimeler: The (G '/G)-expansion method, exact solutions, fractional differential equation, modified Riemann-Liouville derivative, FITZHUGH-NAGUMO EQUATION, NONLINEAR EVOLUTION-EQUATIONS, TRAVELING-WAVE SOLUTIONS, MODIFIED KDV EQUATION, VARIABLE-COEFFICIENTS, MATHEMATICAL PHYSICS, MKDV EQUATION, EXPLICIT, CALCULUS
  • Eskişehir Osmangazi Üniversitesi Adresli: Evet

Özet

In this paper, the fractional complex transform and the (G '/G)-expansion method are employed to solve the time-fractional modfied Korteweg-de Vries equation (fmKdV), Sharma-Tasso-Olver, Fitzhugh-Nagumo equations, where G satisfies a second order linear ordinary differential equation. Exact solutions are expressed in terms of hyperbolic, trigonometric and rational functions. These solutions may be useful and desirable to explain some nonlinear physical phenomena in genuinely nonlinear fractional calculus.