Estimation of renal scarring in children with lower urinary tractdysfunction by utilizing resampling technique and machine learningalgorithms


Creative Commons License

ÇELİK Ö., ASLAN A. F. , OSMANOĞLU U. Ö. , ÇETİN N. , TOKAR B.

Journal of Surgery and Medicine, cilt.4, sa.7, ss.573-577, 2020 (Diğer Kurumların Hakemli Dergileri)

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 4 Konu: 7
  • Basım Tarihi: 2020
  • Doi Numarası: 10.28982/josam.691768
  • Dergi Adı: Journal of Surgery and Medicine
  • Sayfa Sayıları: ss.573-577

Özet

Amaç: Klasik veritabanı yöntemleri, sürekli biriken büyük veri kümeleri için yetersiz olabilir. Yapay zekanın ana alt kümelerinden biri olarak makine öğrenme (MÖ) bu sorunu çözebilir ve tıbbi çalışmalarda mevcut verilerden deneyim kazanarak özellik problemleri için en iyi çözümü bulabilir. Alt üriner sistem disfonksiyonu (AÜSD) olan hastalarda klinik bulgularla renal skar (RS) arasında yüksek doğrulukla korelasyonu gösterebilecek bir yönteme ihtiyaç vardır. Bu çalışmada, AÜSD’lu çocuklarda MÖ kullanarak böbrek skarının tahmini için bir model oluşturmak amaçlanmıştır.

Yöntemler: Ürodinamik çalışmaya ihtiyaç duyan üç yaşından büyük hastalar (n=114) çalışmaya dahil edildi. Veri seti 47 değişkenden oluştu. Semptomatik idrar yolu enfeksiyonu, vezikoüreteral reflü, mesane trabekülasyonu, mesane duvarı kalınlığı, anormal DMSA sintigrafisi, temiz aralıklı kateterizasyon kullanımı gibi değişkenler kaydedildi. RS tahmini için farklı MÖ teknikleri (MÖT) uygulandı.

Bulgular: Karşılaştırmalar sonucunda, Karışıklık Matrisi’ne göre en yüksek doğruluk oranı (%91,30), dengesiz veri kümesinde Extreme Gradient Boosting algoritması ile elde edilmiştir. Dengeli (SMOTE) veri setinde ise, en yüksek doğruluk oranı (%90,63) Yapay Sinir Ağı (YSA) algoritması ile elde edilmiştir. Alıcı İşleme Karakteristiği’ne (ROC) göre, en yüksek başarı oranı (%90,78), SMOTE veri setinde YSA algoritması ile elde edilmiştir.

Sonuç: MÖT tarafından elde edilen yüksek doğruluk oranları, MÖT’lerin AÜSD’lu hastaların RS tahmininde daha hızlı ve doğru bir değerlendirme süreci sağlayabileceğini düşündürmektedir.