Molecular analysis of nematode-responsive defence genes CRF1, WRKY45, and PR7 in Solanum lycopersicum tissues during the infection of plant-parasitic nematode species of the genus Meloidogyne


Bozbuga R.

GENOME, cilt.65, sa.5, ss.265-275, 2022 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 65 Sayı: 5
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1139/gen-2021-0083
  • Dergi Adı: GENOME
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Agricultural & Environmental Science Database, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, EMBASE, Environment Index, MEDLINE, Veterinary Science Database
  • Sayfa Sayıları: ss.265-275
  • Anahtar Kelimeler: Meloidogyne, nematode, gene, CRF1, WRKY45, PR7, TRANSCRIPTION FACTORS, CYTOKININ, ARABIDOPSIS, TOMATO, RICE, PERCEPTION, EXPRESSION, RESISTANCE, INCOGNITA, PROTEINS
  • Eskişehir Osmangazi Üniversitesi Adresli: Evet

Özet

Several pathogens, including nematodes, have severe effects on plant development and growth, and immense populations of parasitic nematodes may cause plant death and crop loss. Obligate plant-parasitic nematodes and root-knot nematodes belonging to the genus Meloidogyne are significant parasites in crops. During nematode infection, damage-associated molecular patterns play a role in the activation of plant defence responses to pathogens. Several genes are involved in Meloidogyne parasitism. However, the expression of nematode-responsive genes CRF1, WRKY45, and PR7 during infection with different parasitic nematode species is not well understood. Therefore, this study aimed to reveal plant responses to differential gene expression of nematode-responsive genes in tomato plants, and their relationship to nematode reproduction and comparative phylogeny. Molecular methods for gene expression, greenhouse work for nematode reproduction, and phylogenetic analysis were used to determine nematode-plant interactions. The results revealed that differential gene expression of CRF1, WRKY45, and PR7 depended on the nematode species. The relative CRF1 gene expression reached its highest level at 3 dpi, following nematode infection. In conclusion, plant defense responses disturbed the expression of nematode-responsive genes, and the differential expression of nematode-responsive genes was affected by nematode species and nematode parasitism.