Green biosourced composite for efficient reactive dye decontamination: immobilized Gibberella fujikuroi on maize tassel biomatrix


ÇELİK S., Kurtulus Tas S., SAYIN F., AKAR T., Tunali Akar S.

Environmental Science and Pollution Research, cilt.31, sa.17, ss.25836-25848, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 31 Sayı: 17
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s11356-024-32809-w
  • Dergi Adı: Environmental Science and Pollution Research
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, IBZ Online, ABI/INFORM, Aerospace Database, Agricultural & Environmental Science Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, EMBASE, Environment Index, Geobase, MEDLINE, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.25836-25848
  • Anahtar Kelimeler: Azo dye, Biosorption, Breakthrough, Fungal cell, Immobilization, Maize tassel, Reactive Yellow 2 (RY2), Wastewater treatment
  • Eskişehir Osmangazi Üniversitesi Adresli: Evet

Özet

Biosorptive treatment with microbial biomass is regarded as an environmentally friendly and effective way to reduce dye contamination in contaminated aquatic environments. Immobilizing microbial cells for use in this process can significantly improve their effectiveness as biosorbents in the water treatment process. The current investigation searches for a sustainable and environmentally friendly approach to decolorization by employing a green biocomposite material sorbent system (ZM@GFC) created by immobilizing fungal cells (Gibberella fujikuroi) on maize tassel tissues to efficiently remove Reactive Yellow 2 (RY2) from contaminated water sources. Batch and dynamic flow tests were performed to evaluate the biodecolorization properties of the newly created immobilized biomaterial as well as the effects of several essential operating conditions factors on the sorption behavior. Biosorption yields of 95.7% and 90.0% in batch and dynamic modes were achieved for experimental dye decolorization. The biosorption of RY2 by ZM@GFC occurred fast and achieved equilibrium within 60 min. The pseudo-second-order kinetic model elucidated the dye biosorption onto ZM@GFC. The Langmuir model provided a more accurate representation of the results than the Freundlich model. At the same time, Redlich-Peterson isotherm demonstrated the best level of agreement with the experimental data. These findings indicate that the biosorption mechanism predominantly involved the formation of a monolayer covering and that the energy properties of the ZM@GFC surface were uniform. The breakthrough capacity at the exhaustion time was 537.32 mg g−1. The predicted cost of generating ZM@GFC was anticipated to be 61.03 USD/kg. The investigations on safe disposal demonstrated that the biosorption process did not generate any secondary pollution. In conclusion, using maize tassel tissue as an immobilized decolorization agent offers a possible method for removing reactive azo dye pollutants from the aquatic medium that is both economical and environmentally benign.