Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease

Kurt I., Ture M., Kurum A. T.

EXPERT SYSTEMS WITH APPLICATIONS, vol.34, no.1, pp.366-374, 2008 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 34 Issue: 1
  • Publication Date: 2008
  • Doi Number: 10.1016/j.eswa.2006.09.004
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.366-374
  • Eskisehir Osmangazi University Affiliated: No


In this study, performances of classification techniques were compared in order to predict the presence of coronary artery disease (CAD). A retrospective analysis was performed in 1245 subjects (865 presence of CAT) and 380 absence of CAD). We compared performances of logistic regression (LR), classification and regression tree (CART), multi-layer perceptron (MLP), radial basis function (RBF), and self-organizing feature maps (SOFM). Predictor variables were age, sex, family history of CAD, smoking status, diabetes mellitus, systemic hypertension, hypercholesterolemia, and body mass index (BMI). Performances of classification techniques were compared using ROC curve, Hierarchical Cluster Analysis (HCA), and Multidimensional Scaling (MDS). Areas under the ROC curves are 0.783, 0.753, 0.745, 0.721, and 0.675, respectively for MLP, LR, CART, RBF, and SOFM. MLP was found the best technique to predict presence of CAD in this data set, given its good classificatory performance. MLP, CART, LR, and RBF performed better than SOFM in predicting CAD in according to HCA and MDS. (c) 2006 Elsevier Ltd. All rights reserved.