Eskişehir Osmangazi Üniversitesi mühendislik ve mimarlık fakültesi dergisi (online), cilt.31, sa.1, ss.572-579, 2023 (Hakemli Dergi)
As a result of the processes applied in the steel production, approximately 400 kg of waste is generated for every one ton of steel products. According to environmental regulations, these wastes must be disposed or stored in waste dams, which imposes a serious financial burden on iron and steel enterprises. In recent years, wastes with a high iron content has been recovered and returned to the steelmaking processes, replacing ore and contributing to a more efficient use of resources. However, despite the high iron content, it is not possible to use high sulphur content wastes as raw material in steel production. In this study, it is aimed to increase the utilization possibilities of these wastes as secondary raw material by reducing the content of sulphur in the concentrate by magnetic separation. It was shown that 33.34% of the wastes can be recycled with 54.90% iron recovery and 74.43% sulphur removal after dry magnetic separation experiments while 14.66% of the wastes can be recycled with 28.60% iron recovery and 89.93% sulphur removal after wet magnetic separation experiments. These removals correspond to 0.03% and 0.01% sulphur contents in the concentrates after dry and wet magnetic separations, respectively, and the concentrates can be blended back into the main raw material.