Atıf İçin Kopyala
Orhan K., BAYRAKDAR İ. Ş., Ezhov M., Kravtsov A., ÖZYÜREK T.
INTERNATIONAL ENDODONTIC JOURNAL, cilt.53, sa.5, ss.680-689, 2020 (SCI-Expanded)
-
Yayın Türü:
Makale / Tam Makale
-
Cilt numarası:
53
Sayı:
5
-
Basım Tarihi:
2020
-
Doi Numarası:
10.1111/iej.13265
-
Dergi Adı:
INTERNATIONAL ENDODONTIC JOURNAL
-
Derginin Tarandığı İndeksler:
Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, EMBASE, MEDLINE
-
Sayfa Sayıları:
ss.680-689
-
Anahtar Kelimeler:
artificial intelligence, cone-beam computed tomography, deep learning, periapical pathology, CONVOLUTIONAL NEURAL-NETWORKS, APICAL PERIODONTITIS, DIAGNOSTIC-ACCURACY, FRACTURE DETECTION, ROOT RESORPTION, DEEP, RADIOGRAPHY, TEETH, CLASSIFICATION, LESIONS
-
Eskişehir Osmangazi Üniversitesi Adresli:
Evet
Özet
Aim To verify the diagnostic performance of an artificial intelligence system based on the deep convolutional neural network method to detect periapical pathosis on cone-beam computed tomography (CBCT) images.