INVESTIGATION OF EBT3 RADIOCHROMIC FILM RESPONSE IN A HIGH-DOSE RANGE OF 6 MV PHOTON AND 6 MEV ELECTRON BEAMS USING A THREE-COLOR FLATBED SCANNER


Creative Commons License

DURUER K., ETİZ D., YÜCEL H.

EAST EUROPEAN JOURNAL OF PHYSICS, cilt.2020, sa.3, ss.11-18, 2020 (ESCI) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 2020 Sayı: 3
  • Basım Tarihi: 2020
  • Doi Numarası: 10.26565/2312-4334-2020-3-02
  • Dergi Adı: EAST EUROPEAN JOURNAL OF PHYSICS
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus
  • Sayfa Sayıları: ss.11-18
  • Anahtar Kelimeler: Radiochromic Film, Uncertainty, High Dose Range, Radiotherapy, Flatbed Scanner, DOSIMETRY
  • Eskişehir Osmangazi Üniversitesi Adresli: Evet

Özet

Radiochromic film dosimetry has been commonly used for determination of dose measurement in radiotherapy for many years because of their high spatial resolution, low energy dependence and its approximate tissue equivalent. Additionally, it has other practical advantages, e.g.it is suitable for therapy range beam qualities, a water resistance material, a relatively insensitive to visible light, and does not need to make bathing process to obtain dose information. They are also independent to dose rate. Hence, they are very useful and practical for clinical applications such as brachytherapy, electron therapy, skin dose measurements and stereotactic radiotherapy. Among them, the dynamic dose range of EBT3 radiochromic films are generally recommended for the dose range of 0.1 to 20 Gy. However, in this study, it is aimed to observe the behavior of EBT3 films in high dose range of up to 90 Gy under the irradiations. For this aim, the net optical densities were obtained with increasing dose values under photon and electron beams by employing three color scanning channels (red-green-blue). Thus, for making calibration curves, it was decided which color channel for EBT3 radiochromic film would be the most suitable one in different dose ranges. In experimental setup, the reference circumstances were first established and dose calibration procedure was carried out in RW3 phantom. Then the irradiated films were cut carefully into 2X2.5 cm(2) pieces, and they were grouped into 2 as irradiation and control groups. The control group was waited for background, i.e. they are not irradiated. Before the irradiation, two groups of films have been scanned in flatbed scanner for three channels. After that, the irradiation group films were placed to align the exact place of effective point of ionization chamber under the reference condition. Later, they were irradiated one by one to up to 90 Gy with using 6 MV and 6 MeV beam qualities, respectively. Subsequently, both of film groups were again scanned in flatbed scanner for three -color channels. Optical densities and their standard deviations corresponding to the chosen dose values were obtained from the scanned films. Thus, calibration curves were plotted for all three colors channel according to two different beam conditions. The results obtained for 6 MV beam quality showed that if red color channel is selected for 0.9 Gy-7.3 Gy dose range, and green color channel is selected for 7.3 Gy-42.8 Gy dose range, and blue color channel is selected for 42.8 Gy-90.0 Gy dose range, the percentage uncertainty values in the obtained results are minimal. For the 6 MeV beam quality, if red color channel is selected for 0.9 Gy-7.7 Gy dose range, and green color channel is selected for 7.7 Gy-45.3 Gy dose range, and blue color channel is selected for 45.3 Gy-90.0 Gy dose range, the percentage uncertainty values in the obtained results are minimal. In conclusion, the percentage uncertainty values for the obtained results were evaluated for 6 MV photon and 6 MeV electron energies by using different scanning channels of EBT3 radiochromic film. It has been found that measurements having low percentage uncertainty values can be achieved by changing the scanning channel by deciding proper combinations with increasing doses for both energies (6MV photon and 6 MeV electron). The study also shows that EBT3 radiochromic films can be used at lower percentage uncertainty values at doses higher than the recommended dose range values.