Rheological compatibility of multi-phase shear thickening fluid with a phenomenological model


GÜRGEN S., SOFUOĞLU M. A., KUŞHAN M. C.

SMART MATERIALS AND STRUCTURES, cilt.28, sa.3, 2019 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 28 Sayı: 3
  • Basım Tarihi: 2019
  • Doi Numarası: 10.1088/1361-665x/ab018c
  • Dergi Adı: SMART MATERIALS AND STRUCTURES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Anahtar Kelimeler: shear thickening fluid, additive particles, nano-science, rheological modeling, IMPACT RESISTANCE, STAB RESISTANCE, BEHAVIOR, ADDITIVES, STF
  • Eskişehir Osmangazi Üniversitesi Adresli: Evet

Özet

Shear thickening fluid (STF) is a kind of non-Newtonian fluids exhibiting drastic viscosity jump under an increasing shear rate. Even though these fluids are single-phase suspensions including nano-sized particles in a carrier liquid, various additives have been included in the suspensions to form multi-phase shear thickening concept. Despite novel concepts in compositions, rheological models have been studied only for single-phase STFs until this time. In the present work, multi-phase suspensions were fabricated adding aluminum oxide particles in a nano-silica/PEG based STF. Additive amount and temperature were selected as variables in the rheological measurements. Upon obtaining experimental data from the rheological tests, viscosity curves of the multi-phase STFs were adapted for a phenomenological model which was suggested for single-phase STFs. According to the results, the model gave proper fitting for the flow curves beyond the thickening point. However, it yielded a lower performance to predict the shear thinning region prior to the thickening onset. Therefore, a modified model was developed to fully cover the rheological behavior of multi-phase STFs. By the modified model proposed in this study, flow prediction of multi-phase STFs was improved due to the enhanced fitting performance, especially in the shear thinning region.