Synthesis and characterization of novel indole-cyanoacetic acid derivative and its applications


YAMAN M., Mustafayev H., Arici Ö., Kavak E., Berber H., KIVRAK A., ...Daha Fazla

Journal of Solid State Electrochemistry, 2024 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s10008-024-06035-w
  • Dergi Adı: Journal of Solid State Electrochemistry
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Chemical Abstracts Core, Compendex, INSPEC
  • Anahtar Kelimeler: Cyanoacetic acid, D-π-A indole dye, Electrooxidation reactions, Hydrazine, Organic catalyst
  • Eskişehir Osmangazi Üniversitesi Adresli: Evet

Özet

Herein, the novel organic catalyst, (E)-2-cyano-3-(5-(1-methyl-2-(naphthalen-1-yl)-1H-indol-3-yl)furan-2-yl)acrylic acid (8), was designed and synthesized. Initially, novel indole-cyanoacetic acid was prepared by using the Sonogashira coupling reaction, iodocyclization reaction, Suzuki–Miyaura coupling reaction, and condensation reactions. Then, electrochemical studies were carried out to investigate the anode electrocatalyst performance. Electrochemical techniques, including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in a 1 M KOH + 0.5 M N2H4 solution, were employed to determine the hydrazine electro-oxidation performance of the catalyst (8). In addition, theoretical calculations were used to find band gap energies. Our D-A type organic catalyst (8) exhibits very high catalytic activity with 24.67 mA/cm2. D-A organic systems were shown to have the potential to be ecologically benign anode catalyst materials for hydrazine fuel cell applications.