A critical evaluation on nuclear safety properties of novel cadmium oxide-rich glass containers for transportation and waste management: Benchmarking with a reinforced concrete container

Almisned G., Baykal D. S., Kılıç G., İlik E., Zakaly H. M., Ene A., ...More

FRONTIERS IN PHYSICS, vol.10, 2022 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 10
  • Publication Date: 2022
  • Doi Number: 10.3389/fphy.2022.1080354
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, INSPEC, Directory of Open Access Journals
  • Keywords: nuclear safety, container, MCNPX, CdO, glasses, PARAMETERS, GAMMA
  • Eskisehir Osmangazi University Affiliated: Yes


We examine the nuclear safety properties of a newly designed cadmiumoxide-rich glass container for nuclear material to a bitumen-reinforced concrete container. Individual transmission factors, detectormodelling, and energy deposition (MeV/g) in the air are calculated using MCNPX (version 2.7.0) general purpose Monte Carlo code. Two container configurations are designed with the material properties of cadmium dioxide-rich glass and Concrete + Bitument in consideration. First, individual transmission factors for 60Co and 137Cs radioisotopes are calculated. To evaluate potential environmental consequences, energy deposition amounts in the air for 60Co and 137Cs are also determined. The minimum gamma-ray transmission rates for two container types are reported for a cadmium dioxiderich glass container. In addition, the quantity of energy deposition is varied depending on the container type, with a lower value for cadmium dioxide-rich glass container. The 40% cadmium dioxide-doped glass container provides more effective safety than the Cement + Bitumen container, according to the overall findings. In conclusion, the utilization of cadmium dioxide-doped glass material along with its high transparency and advanced material properties may be a significant and effective option in areas where concrete is required to assure the safety of nuclear materials.