Development of the high performance magnesium based hydrogen storage alloy


ANIK M., Karanfil F., Kucukdeveci N.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, cilt.37, sa.1, ss.299-308, 2012 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 37 Sayı: 1
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1016/j.ijhydene.2011.09.057
  • Dergi Adı: INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.299-308
  • Anahtar Kelimeler: MgNi, Mechanical alloying, Electrochemical hydrogen storage, Impedance spectroscopy, Hydrogen diffusion coefficient, AMORPHOUS MGNI ALLOY, TERNARY ALLOYS, NI, TI, ELECTRODE, BATTERIES, HYDRIDES, MG2NI, ZR, AL
  • Eskişehir Osmangazi Üniversitesi Adresli: Evet

Özet

Series of MgNi type alloys with Ti, Al, Zr, Pd and Co additive elements were synthesized by mechanical alloying and their electrochemical hydrogen storage characteristics were investigated. Systematical alloy designing indicated that Mg0.80Ti0.15Al0.05Zr0.05Ni0.95 alloy has the best electrode performance. The atomic fractions in this alloy were believed to be optimum to get the reasonable amount of hydrogen storage with the improved cyclic stability. Titanium was estimated to enter into Mg(OH)(2) layer during the discharging process and make this barrier layer more penetrable by elemental hydrogen. Al and/or Al-oxides were predicted to dissolve selectively throughout the barrier hydroxide layer and thus reduce the stability of this layer. The main contribution of Zr was estimated to arise from its large atomic size that Zr atoms can create extra sites for the elemental hydrogen in the alloy structure. As the alloy charge transfer resistances decreased, the alloy retention rates increased. Improvement in the alloy capacity retaining rate was also closely related with the hydrogen diffusion coefficients in the alloy. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.