MOF-801 based solid phase microextraction fiber for the monitoring of indoor BTEX pollution


Bolat S., DEMİR S., ERER H., PELİT F., Dzingelevičienė R., Ligor T., ...Daha Fazla

Journal of Hazardous Materials, cilt.466, 2024 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 466
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1016/j.jhazmat.2024.133607
  • Dergi Adı: Journal of Hazardous Materials
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, Biotechnology Research Abstracts, CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, Computer & Applied Sciences, Environment Index, Food Science & Technology Abstracts, Geobase, INSPEC, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Indoor air pollution, Metal organic frameworks, Solid phase microextraction, Volatile organic compounds
  • Eskişehir Osmangazi Üniversitesi Adresli: Evet

Özet

Benzene, toluene, ethylbenzene and xylenes (BTEX) are some of the better-known indoor air pollutants, for which effective monitoring is important. The analysis of BTEX can be performed by different type of solid phase microextraction (SPME) fibers. This study presents a proposal for a low cost, convenient and environmentally friendly analytical method for the determination of BTEX in air samples using custom made SPME fibers. In this context, custom made metal organic frameworks (MOF-801) were coated on a stainless-steel wire for SPME fiber preparation. The analysis of BTEX was performed by introducing SPME fiber into an analyte-containing Tedlar bag in steady-state conditions. After the sampling step, the analytes were analyzed using gas chromatography mass spectrometry in selected ion monitoring mode. Parameters that affect the analysis results were optimized; these include desorption temperature and time, preconditioning time, extraction temperature and time, and sample volume. Under optimized conditions, analytical figure of merits of developed method were obtained, including limits of detection (LOD) (0.012 – 0.048 mg/m3), linear ranges (0.041–18 mg/m3), intraday and interday repeatability (2.08 - 4.04% and 3.94 - 6.35%), and fiber to fiber reproducibility (7.51 - 11.17%). The proposed method was successfully applied to real air samples with an acceptable recovery values between 84.5% and 110.9%. The developed method can be applied for the effective monitoring of BTEX.