Atıf İçin Kopyala
Yakar M., Etiz D., Celik Ö., Ozen A.
Indian journal of cancer, cilt.59, sa.2, ss.178-186, 2022 (SCI-Expanded)
-
Yayın Türü:
Makale / Tam Makale
-
Cilt numarası:
59
Sayı:
2
-
Basım Tarihi:
2022
-
Doi Numarası:
10.4103/ijc.ijc_666_19
-
Dergi Adı:
Indian journal of cancer
-
Derginin Tarandığı İndeksler:
Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, CINAHL, EMBASE, MEDLINE, Veterinary Science Database
-
Sayfa Sayıları:
ss.178-186
-
Anahtar Kelimeler:
Cancer, machine learning, radiotherapy, toxicity, INTENSITY-MODULATED RADIOTHERAPY, BONE-MARROW, RADIATION-THERAPY, CERVICAL-CANCER, MALIGNANCIES, PREDICTORS, VOLUME, IMRT, ARC
-
Eskişehir Osmangazi Üniversitesi Adresli:
Evet
Özet
Background: The aim of the study is to investigate the factors affecting acute hematologic toxicity (HT) in the adjuvant radiotherapy (RT) of gynecologic cancers by machine learning.