JOURNAL OF COORDINATION CHEMISTRY, cilt.76, sa.16-24, ss.1802-1816, 2023 (SCI-Expanded)
Three new 2D heteronuclear tetracyanonickelate(II) complexes
with 4-ethylpyridine (4epy), [Cu(4epy)2Ni(m-CN)4]n (1),
[Zn(4epy)2Ni(m-CN)4]n (2) and [Cd(4epy)2Ni(m-CN)4]n (3), were synthesized
and characterized by vibrational (FT-IR and Raman) spectroscopy,
elemental and thermal analyses, single crystal (SC-XRD)
and powder X-ray diffraction (PXRD) techniques. The single crystal
X-ray analysis reveals that each metal ion (Cu(II), Zn(II), and Cd(II))
is coordinated by two nitrogen atoms from 4epy ligands and four
nitrogen atoms from cyanide ligands and Ni(II) ions are coordinated
by four carbon atoms from cyanide ligands showing a distorted
octahedral and square planar coordination geometries,
respectively. The most outstanding features of the complexes are
the weak intermolecular C–H���Ni interactions between the Ni(II)
ion and hydrogen atom of the ethyl group of the 4epy ligand.
Adjacent 2D structures are further combined by these C–H���Ni
interactions, generating a 3D network. The heterogeneous catalytic
activity of 3 was investigated for oxidation of some primary
and secondary aliphatic or aromatic alcohols; no acid formation
was observed in some aromatic alcohols after 24 h and 100%
aldehyde selectivity was determined.