Journal of the Faculty of Engineering and Architecture of Gazi University, cilt.40, sa.1, ss.155-163, 2024 (SCI-Expanded)
In this study, carbon nanotube (CNT) supported M(Bi, Cu, Fe, Nb) catalysts were prepared by the sodium borohydride (SBH) reduction method for hydrazine electro-oxidation. The structural and morphological surface analyses of the 3% Cu/CNT catalyst were characterized by X-Ray diffraction (XRD) and scanning electron microscopy-energy dispersive X-Ray (SEM-EDX) and mapping analyses. The catalytic activities of the catalysts were investigated by cyclic voltammetry (CV) analysis. The 3% Cu/CNT catalyst exhibited the best catalytic activity compared to other catalysts, with a specific activity of 34.7 mA/cm2. The electrocatalytic performance of the 3% Cu/CNT catalyst was investigated with different scan rates. It was also found to have the best resistance by electrochemical impedance spectroscopy (EIS) analysis. It has the potential to be a promising anode catalyst for direct hydrazine fuel cells (DHYPs).