Architectural design of new conjugated systems carrying donor-π-acceptor groups (carbazole-CF3): Characterizations, optical, photophysical properties and DSSC's applications


Derince B., GÖRGÜN K., Caglar Y., Caglar M.

Journal of Molecular Structure, cilt.1250, 2022 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 1250
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1016/j.molstruc.2021.131689
  • Dergi Adı: Journal of Molecular Structure
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Chimica, Compendex, INSPEC
  • Anahtar Kelimeler: Carbazole, Suzuki-Miyaura cross-coupling reaction, ZnO, DSSC, SENSITIZED SOLAR-CELLS, CROSS-COUPLING REACTION, RUTHENIUM COMPLEXES, TRIFLUOROMETHYLATION, FLUORINE, DYES, ENHANCEMENT, PERFORMANCE, ACTIVATION, CHEMISTRY
  • Eskişehir Osmangazi Üniversitesi Adresli: Evet

Özet

© 2021In this study, two new organic dyes containing substituted N-octyl carbazole as electron donor and -CF3 units as electron acceptor group were designed and synthesized for ZnO-based dye sensitized solar cells (DSSCs). The synthesized carbazole derivatized compounds 3,6-bis(3,5-bis(trifluoromethyl)phenyl)-9-octyl-9H-carbazole (IVa) and 3,6-bis(4-(trifluoromethyl)phenyl)-9-octyl-9H-carbazole (IVb) were characterized by FT-IR, 1H NMR, 13C NMR, HMBC and CHN analyses. The spectroscopic (UV–Vis and FL) and thermal properties (TGA-DTA) of these compounds were also investigated. The produced (IVa and IVb) ZnO films were used as photoanodes in all DSSCs. Microwave-assisted hydrothermal method was used to synthesize ZnO nanopowders with different morphologies which are used as photoanodes in DSSCs. The structural and morphological properties of ZnO nanopowders were investigated using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). ZnO-DSSCs were produced through coating ZnO nanopowders on transparent conductive fluorine-doped tin oxide (FTO) coated glass substrate using the Doctor Blade method. Current-voltage measurements of all produced DSSCs were carried out under a solar simulator with AM 1.5 G filter having an irradiance of 100 mW/cm2. Solar cell performances of all DSSCs such as; open-circuit voltage (Voc), short circuit current (Jsc), fill factor (FF) and power conversion efficiency (PCE) were analyzed.