HOMOLOGY HOMOTOPY AND APPLICATIONS, cilt.18, sa.1, ss.99-128, 2016 (SCI-Expanded)
We address the homotopy theory of 2-crossed modules of commutative algebras, which are equivalent to simplicial commutative algebras with Moore complex of length two. In particular, we construct for maps of 2-crossed modules a homotopy relation, and prove that it yields an equivalence relation in very unrestricted cases (freeness up to order one of the domain 2-crossed module). This latter condition strictly includes the case when the domain is cofibrant. Furthermore, we prove that this notion of homotopy yields a groupoid with objects being the 2-crossed module maps between two fixed 2-crossed modules (with free up to order one domain), the morphisms being the homotopies between 2-crossed module maps.