GaN thin film deposition on glass and PET substrates by thermionic vacuum arc (TVA)


MATERIALS CHEMISTRY AND PHYSICS, vol.159, pp.1-5, 2015 (SCI-Expanded) identifier identifier


In this paper, GaN thin film production was realized by thermionic vacuum arc (TVA), a plasma deposition technique, for the first time. We present a new deposition mechanism for GaN thin films with a very short production time. Microstructure properties of samples were analyzed by X-ray diffractometry. The peak at 2 theta = 72.88 degrees corresponding to GaN (0004) was detected in XRD spectra. The surface morphology of the deposited GaN films was analyzed using field emission scanning electron microscopy and atomic force microscopy. The surface properties of the produced samples are quite different. The average roughness values were determined to be 0.48 nm for GaN/PET and 1.17 nm for GaN/glass. The optical properties (i.e., refractive index and reflection) were determined using an interferometer. Moreover, the obtained optical data were compared with bulk GaN materials. The refractive indexes were measured as 2.2, 3,0 and 2,5 for the GaN/glass, GaN/PET and bulk GaN, respectively. The transparencies of the different GaN-coated substrates are nearly the same. The obtained band gap values were measured in the energy range of 3.3-3.5 eV. TVA is a novel non-reactive plasma technique for the generation of metal organic thin films. The main advantage of this method is its fast deposition rate without any loss in the quality of the films. (C) 2015 Elsevier B.V. All rights reserved.