The role of free radicals in p-aminophenol-induced nephrotoxicity: Does reduced glutathione have a protective effect?


Kanbak G., Inal M., Baycu C.

CLINICA CHIMICA ACTA, vol.252, no.1, pp.61-71, 1996 (Journal Indexed in SCI) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 252 Issue: 1
  • Publication Date: 1996
  • Doi Number: 10.1016/0009-8981(96)06314-0
  • Title of Journal : CLINICA CHIMICA ACTA
  • Page Numbers: pp.61-71

Abstract

The role of free radicals in p-aminophenol (PAP)-induced nephrotoxicity and effects of reduced glutathione (GSH) were investigated. We injected PAP in one group of rats and PAP plus GSH in a second group. All parameters were measured in the renal tissue. Superoxide dismutase (SOD) activity in the PAP + GSH group (7.1 +/- 0.36 U/mg protein) was found to be significantly higher than in the control group (4.9 +/- 0.13) (P < 0.001). Catalase (CAT) was found to be significantly low in both groups (P < 0.001 in the PAP group (13.48 +/- 0.85 U/mg protein), P < 0.01 in the PAP + GSH group (18.75 +/- 1.17) as compared to the control group (41.03 +/- 0.93)). Glutathione peroxidase (GPx) in the PAP and PAP + GSH groups was found to be significantly high (P < 0.01 in the PAP group (5.32 +/- 0.033 U/mg protein), P < 0.001 in the PAP + GSH group (6.48 +/- 0.1)) as compared to the control group (2.93 +/- 0.093)). Similarly, glutathione reductase (GSSGR) in the PAP (0.023 +/- 0.002 U/mg protein), and PAP + GSH (0.025 +/- 0.001) groups was found to be significantly high as compared to the control group (0.014 +/- 0.001) (P < 0.001). GSH in the PAP (161.93 +/- 8.3 mg/mg protein) and PAPS-GSH (170.7 +/- 4.51) groups were found to be significantly higher than the control group (104.91 +/- 3.0) (P < 0.001). Malondialdehyte (MDA) in the PAP (11.12 +/- 0.62 nmol/mg protein) and PAP +/- GSH (9.72 +/- 0.46) groups was found to be significantly higher than in the control group (5.54 +/- 0.51) (P < 0.001). Free radicals might have a major role in the PAP-induced nephrotoxicity, GSH increased nephrotoxicity.