Electrochemical Performance of (MgCoNiZn)(1-x)LixO High-Entropy Oxides in Lithium-Ion Batteries


LÖKÇÜ E., Toparli C., ANIK M.

ACS APPLIED MATERIALS & INTERFACES, cilt.12, sa.21, ss.23860-23866, 2020 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 12 Sayı: 21
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1021/acsami.0c03562
  • Dergi Adı: ACS APPLIED MATERIALS & INTERFACES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Chemical Abstracts Core, Compendex, EMBASE, INSPEC, MEDLINE
  • Sayfa Sayıları: ss.23860-23866
  • Anahtar Kelimeler: high-entropy oxides, conversion-type anode, Li-ion battery, oxygen vacancies, charge compensation, NANOSTRUCTURED ANODE MATERIALS, OF-THE-ART, STORAGE, DESIGN, CO3O4
  • Eskişehir Osmangazi Üniversitesi Adresli: Evet

Özet

High-entropy oxides (HEOs), which are a new class of single-phase solid solution materials, have recently attracted significant attention as an anode material for lithium-ion batteries (LIBs). In this study, (MgCoNiZn)(1-x)LixO (x = 0.05, 0.15, 0.25, and 0.35) HEOs were synthesized and their electrochemical performances as the anode material were observed in LIBs. X-ray photoelectron spectroscopy (XPS) analysis showed that the increase in the lithium cation concentration causes generation of more oxygen vacancies, which greatly affected the electrochemical performance of (MgCoNiZn)(1-x)LixO HEO anodes, in the structure. The more the oxygen vacancy concentration in the anode, the higher the discharge capacity in the LIB. The (MgCoNiZn)(0.65)Li0.35O anode had 1930 mA h g(-1) initial and 610 mA h g(-1) stable (after 130 cycles) discharge capacities at a current density of 1000 mA g(-1). This work clearly indicated that designing a HEO with abundant oxygen vacancies in the structure was a very efficient strategy to improve the electrochemical performance of the HEO electrode for LIBs.