Genome Analysis of Halomonas elongata Strain 153B and Insights Into Polyhydroxyalkanoate Synthesis and Adaptive Mechanisms to High Saline Environments


Enuh B. M., Aytar Çelik P.

Current Microbiology, cilt.80, sa.1, 2023 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 80 Sayı: 1
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1007/s00284-022-03115-w
  • Dergi Adı: Current Microbiology
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, Environment Index, Food Science & Technology Abstracts, MEDLINE, Veterinary Science Database
  • Eskişehir Osmangazi Üniversitesi Adresli: Evet

Özet

© 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.Species of the Halomonas genus are gram-negative, aerobic, moderately halophilic bacteria that synthesize polyhydroxyalkanoates (PHAs) and other high-value products that have a wide range of potential uses in the food, feed, cosmetics, pharmaceutical, and chemical sectors. Genome sequencing studies allow for the description and comparison of genetic traits with other strains and species, allowing for the exploration of the organism's potential, necessary to further biotechnology applications. Here, the genome of Halomonas elongata strain 153B was sequenced, its features compared to 5 other strains and 7 species, and a description of features for adaptations to hypersaline environments and bioproducts synthesis was done. Whole-genome analysis showed H. elongata 153B has more similar features to the reference strain H. elongata DSM 2581 compared to 4 other reported strains. Comparative genomics showed 2064 core genomic clusters between the strains and 666 singletons for strain 153B. Several genes in transport and signaling, osmoregulation, and oxidative stress that have roles in adaptation to environments with high osmolarity were also revealed. These appear to form an intricate network of overlapping systems carefully coordinated to bring about adaptation. H. elongata 153B genes for the synthesis of PHAs, ectoine, vitamins, and the degradation of drugs and aromatic compounds were described. The results will aid in the study of halophile physiology, provide a mine for valuable enzymes, and help speed up research for other biotechnology applications.